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1. Introduction

Throughout the theoretical and applied importance, a mixed problem for partial
differential equations refer to one of the urgent problems of mathematics and
mathematical physics. Some problems of electrodynamics, problems of underground
hydromechanics, nonstationary problems for mathematical physics equations are
reduced to such problems. Symbolic calculus used by engineer-electrician O.
Hevyside was one of the convenient, but mathematically not reasonable tools.

In the beginning of the XIX century, Fourier suggested the method of
separation of variables for integration of some linear partial differential equations
under the given boundary and initial conditions. Application of the Fourier method
to the solution of mixed problems with separated variables reduces to the problem
of expansion of an arbitrary function from some class in eigen functions
corresponding to the spectral problem.

In 1827, for solving mixed problems with constant coefficients, Cauchy [2]
suggested the residue method the essence of which is in representation of an
"arbitrary" function in the form of integral residue. One of the methods for solving
mixed problems for partial differential equations is the method of integral
transformations that was successfully used by Laplace , A.L. Cauchy [2], M.L.
Rasulov [10] and others.

In his researches M.L. Rasulov used the integral transformation

o(2) = [ p(t)ct, )
0
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and for (1) assumed that (1) is an analytic function in the domain
R, :{1:12 R, argﬂ.éZ+5,5>O},

tending to zero as W —> oo uniformly with respect to arg A (see the conditions

of theorem 1.1 on page 152 of the paper [10]).
Note that if for A € R§ satisfying the inequality, Re(—/IZ) >0, M.L.

Rasulov determines (;(/1) by formula (1), then this integral, generally speaking,

diverges. But if 1 e Q= {/1 >R, |arg 4| < %} Rasulov would take @(A) in
the form of (1) and in domain R5 \ Q determined the function a(ﬂ,) by analytic

continuation, then the conditions of existence of such a continuation should be
clarified additionally so that this assumption be fulfilled. Furthermore , M.L.

Rasulov, except one special function ¢(t) = L (from p.245, [10]) does not show

Vi
the class of functions ¢(t) for which @(A) satisfies this assumption.
In [10], [11] it is assumed that under suitable numberings &; (X) (&; are

the roots of the characteristic equation of spectral problem), the following conditions
are fulfilled

Re[16,(x)]< Re[16,(X)]<...<Re[16,(X)] xe[a,B], Aecw, 2
where @ is some infinite part of A plane, wherein we look for asymptotic behavior
of the system of fundamental particular solutions of a homogeneous equation

corresponding to spectral problem. In applications, feasibility of condition (2)
reduces to the fact that:

A) arguments (91- (X) and arguments of their differences are independent of

Xe [a,,B] (for example, see: restraint 3° on page 23, [10]), that in our opinion is a

more rigid restraint.
Note that when solving mixed problems [4] we are restricted in consideration

of a parametric problem not on the whole infinite part of A - plane but only in some

T
part ( in the sector \arg /1‘ < Z + 0 ) of A -plane and because of that we get rid of

rigid constraint A).

There exists a wide range of mixed problems of theoretical and practical
importance that are not solved by the known Fourier, G.D. Birkhoff [1], Ya. D.
Tamarkin [11], M.A. Naimark [9 ], M.L. Rasulov [10] methods. In the case of
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irregular boundary conditions, expansion in eigen and associated functions has a
number of specific features.

The authors resecrch shows that when solving these problems it is not
obligatory to use Brikhoff- Tamarkin-Naimark-Rasulov's expansion formulas.

In this paper we suggest the method of finite integral transformation that
admits to find the solution of irregular mixed problems under more general boundary
conditions and weaker constraints on the problem data.

1.1. Finite integral transformation
Let f (’[) be a complex, a)('[)a real function of the real argument

t (0<t<T, T issome positive number) and f, o, f -@we L([O,T]).
Definition. We call the function f~ (ﬂ. t) determined by the formula

:ia’(f)exp{ ol } ©
-ﬂ(/l,t):}a)(r)exp{ Aol } e, tefoT]

where A is a complex number, the image of the function f (t)
We have:

Theorem E. Let (t)e C((0,T)N L([0,T]), ja)(n)dn >0 for

0<z<t<T, f (t) be bounded and continuous (except denumerable number

of points at which it may have discontinuity of first kind) with respect to} { € [O,T ]

Then for all (0 <t <T), the function f (t+0)= IimO f(r)is
T>tE

represented by its own image in the form
f(tx0)=——————[exp| Ao f,(2,1)dA, 4)
(10)~ oo 4fa(e)oe . (41

where L is an in finite smooth line in 4 -plane whose a rather distant part coincides

with continuation of the rays arg(1+a)= i(%+9j; a, o (O <0< 7z/2) are

some constants, and in (4) the integral with respect to L is understood in the sense
of principal value.

Assume f;(t)= f(t) fortt; <t<t,,, f;(t;)= f(t; +0)
fi(ti,;)=f(ti,y —0) where t;(0=ty<t;<..<t,=T) are some
points.
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Corollary. If o(t)eC([0,T]), @(t)>0 for te[o,T] (>0 and the
functions f; (t) are absolutely continuous with respect to
te [ti ’ti+1]’ (i =0,...,m —1) (m is a natural number), then (4) holds for

6 = 0as well.

1.2. Finite integral transformation method(for parabolic equations)

Here for a wide range of readers, on the following irregular model problem 1
for parabolic equations we state the finite integral transformation method.

Model problem 1. To find the classic solution U =U(X,t) of the equation

2
a—“=aza—‘2‘+|:(x,t) 0<x<1l, 0<t<T <o )
ot OX
satisfying the irregular conditions
1
Z—l: =, (t), jK(x)u(x,t)dx:goz(t) 0<t<T, (6)
x=0 0
and the initial condition
u(xt),_, = f(x), xe(0)), 7)

where F,gol,(pz, f are the known functions, a-const
1°. Let equation (1) be parabolic in I.G. Petrovsky sense, i.e. let
= V4
a:\a\eﬂwga, |arg a|£z—¢9, la>0,
where @ is some number satisfying the inequality
0<o<% 8
2°. Let the functions F(X,t), ¢, (t),¢,(t), f (X) be continuous for 0 < X <1,
0<t<T.
Stage 1. Obtaining operation problem
For t > 0 applying the finite integral transformation

F(t, 1) = ! e p(r)dr, ©)

(A is a complex parameter) to (5)-(6) and using (7) and then performing on the

image U (X,t, 1) operations corresponding to the given operations on U(X,t),
we get the following operation problem (10),(11):

[azaa—;—ﬂzJa(x,t,z):exp(—/lzt)u(x,t)— f(x)-F(xt 1), 0<x<1 (10)
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(x4 A :—%e—f‘v(m%( f(0)+@,(t, A));

1
JKOO)T(x,t, A)dx = 3, (t, 2), (11)
0

where

t 2 ~ t 2
U(x,t2)=[e* u(x,r)dr, F(xt,4)= Ie_i "F(x,7)dr,
0 0

t 2
vty =u(xt) . @ (t, 4) :jef’1 ‘o (r)dz. (12)
0

Remark 1. One our distinction from the authors engaged in such problems
is that unlike the operation problem constructed by us in the present case the right

hand side of the operation problem contains the sought-for function U(X,t) as

well.

Stage 2. Studying the parametric problem.

For solving the operation problem (10)-(11) at first we study the parametric
problem (13)-(14) corresponding to it

a’y"-2’y=wy(x), xe(0,2) (13)
1

U, (V) =Y/ =n, Uz(Y)EJK(X)Y(X’ﬂ)dXZ%, (14)
0

where (x) e C([0,1]),y,,7, are arbitrary numbers.
In [4] we have shown that when studying mixed problems for parabolic

systems of order 2p it suffices to consider the domain of change of parameters A
in the form

Ry ={/1:/12 R, argﬁsf+5,5>0}.
P
Consequently, here and in the sequel, we will assume that
AeR; ={,1:/12 R, [arg /134”+5},
p

where R is a rather large positive number (see remark 5),
5(0<6<0) (15)
is an arbitrarily fixed number (see remarks 4 and 7).

We take the system of fundamental particular solutions of a homogeneous equation
corresponding to (13) in the form
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A A
yy (X, A) =exp(—ax], xe[01], y,(x,4) =exp(—a(1—x)j, (16)
the fundamental solution of equation (13) we take in the form
1 A
P(X,&, A1) =———exp| ——[X=¢| |.
(g A)=—— p[ a\ fj 17)

Note that here fundamental solution P(X,f,/i) and the systems of fundamental
particular solution Y, (X, 1), Y,(X,A), are chosen so that for A € Ra,‘/’t‘ —> 0

they are decreasing functions with respectto A .
Remark 2. It is known that the Green functions of the problem (13)-(14) are

independent on the choice of the fundamental solution P(X, g, A) and the system
of fundamental particular solutions Y, (X, 4), Y, (X,4) . Here their such choice

for AeR s frees us from the operations performed in [10, 11], over the determinants

contained in the expression of the Green function.
The denominator of the Green function of the problem (13)-(14) will be

A(A) = Ui(y1) Ui(y,)
U,(y1) U,(Y,)
Expanding the determinant (18), we have

AA) =ay M +ay ANty AN +OM T, 1eR,,  (19)
where M is the highest possible degree with respectto  A,S is some

(18)

nonnegative integer, ¢, are some numbers.
Incidentally we note that we can take the number S contained in (19) rather
large (i.e. for 1R for A(A) we can get more exact asymptotics) if the

functions contained in the left hand side of the parametric problem (13), (14) are
rather smooth.

Remark 3. In [4] for the equations with variable coefficients and “general”
, boundary conditions sufficient conditions imposed on the coefficients of the

parametric problem that provide to obtain asymptotics A(ﬂ)to the required

accuracy S for A € R5 are given.

Definition 1. We say that boundary conditions of parametric problem (13)-
(14) are well-imposed if at least one of the numbers
Ay Oy 15 -s Ay s (from (19)) (20)
is nonzero.
From this definition we immediately get:
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-If the boundary conditions of the parametric problem are regular in the
sense of Birkhoff -Tamarkin - Naimark-Rasulov, then they are well-posed by our
definition.

But the inverse statement is not true

3%, Let irregular conditions (14) be well-posed and in the sequence (20) the

first nonzero number be ¢, , where q(g € Z) is some integer.
We chose the number R so large that
A(2)] 2 ;aqﬂq for AeR; (21)
Now show the sufficiency of the condition providing well-posedness of irregular
conditions (14).
2. Let K(x)eC"([01]), K" @M)=0, KP@D)=0 for
J<N—2  wherenis some natural number.

Taking into account (16) in (18), we get
1 A A1 A
-=(1-x) -= -=X
A(A)=[K(x)e @ dx—e 2[K(x)e & dx. (22)
0 0

Using the constraint 4° , integrating the following integral by parts, we

have
1 “*a-x) a) A a i
[K(x)e @ dx=—[—) KOD1)+e 32(—j KUD(0) +
0 ;L j=1 l
n 1 i i
*(‘3] [ e+ (23)
/1 0
Taking into account 1° we have
I
e al<e ¥ as AeR;, (24)

where &£ =8in(@ - 0) > 0.
Remark 4. In (15) selection of the number ¢ satisfying the inequality

O < @ provides positivity of the number & contained in (24).
Note that

EPee <c,, Eellw), limEPe™ =0, (25)
&—>0
where p is any real number, Cp IS some positive constant.
Taking into account (23) (24), (25) in (22) , we get
A(A) = jn(—l)“”a“K(“‘l) )+ o(ﬁl j A€R; (26)

n+1
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that shows well -posedness of irregular conditions (14).
Thus we established

Lemma 1. Let constaints 1°, 4° be fulfilled. Then for A e Rs for the
equation (13) the irregular conditions (14) are well-posed.
Now we choose the number R so large that
11
Az =2 [d" K@) as A<R; (27)
2
Remark 5. The numbers R is chosen from the following two conditions:
-in the domain R5 to find to the required accuracy the asymptotic

representation of the system of fundamental particular solutions of homogeneous
equation corresponding to the equations of the parametric problem (in the present
model example we did not need it)

-in the domain Ry for A(A) -denominator of the Green function of the
parametric problem to get the lower estimate of type (21) ( in the presen case of type

(27)).

From (27) it follows that A(4) #0 for A € Ry, this inequality implies
the validity of the following classic theorem.

Theorem 1. Let the constraints' 1°, 4° be fulfilled, 1 (X) € C([0]), »,
and ), be arbitrary numbers, then for Ae R5 the parametric problem (13,14)

-has a unique solution,
-this solution is represented by the formula [4]

Y% A) = (% A r172) + [ G0 & (ENE, xe(01) (28)
0

G(x,&,4)=P(x,&,4)+G,(x,&,4)
The function d(X, 4, 7;,7,) with respect to y; and 7, is linear , i.e.

O(X% A,y +APy, +0AB2) = 0(X, 4,71, 72) + A0 (X, 4, By, Ba)- (29)
Taking into account (24) in (16) for A € R5 we get the validity of the following

inequalities
Y (x,2) < pll2

,X), xe[01],(k=12), (30)
where
p(A

4 Xj + exp(— £ ﬂ(l— x)j.
a a
Stage 3.Inversion formulas.

At this stage we get some inversion formulas connected with:

,x):exp[—g
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5(X,l,71,}/2) is the solution of homogeneous inversion formulas equation
corresponding to (13), satisfying inhomogeneous irregular conditions (14),
- G(X,&, 1) is the Green function of the parametric problem (13), (14).

Let L be an infinite open smooth line in the domain R whose rather

distant part coincides with the continuation of the rays arg A :i[”+5j_ In the
4

sequel, let R<R; <R, <..., and lim R, =co L beapartof L remaining

m—oo

interior to the circle of radius R; and C_ be a part of a circle of radius R ;

( centered at the origin of coordinates of A - plane ) remaining in the domain R5.
We have
Lemma 2. Let (4) be an analytic function with respectto 4 € Ry

and \g(/l)\ < const\/l\s for A € R; where S, (S € Z)is some integer. Then for

0 < X <1, we have the following formula of inversion to zero
[a()y,(x1)d2=0, k=12
L

where Y, isfrom (16). Here and in the sequel, the integral with respect to L is
understood in the sense of principal value.
Lemma 3. Under constraints 1° and 4° for any numbers y; , ¥, and

for any integer S,(S € Z) we have the following formula of inversion to zero
jzsg(x,z,yl,yz)dzzo, O<x<l . (31)
L

Lemma 4. Under constraints 1° and 4° if l//(X) Is a piece-wise continuous

function in [0,1] then for any integer S,(S € Z) it holds the following formula of
inversion to zero
1
jfd/ljel(x,g,z)w(g)d§=o, O<x<1 . (32)
L 0

According to [4] we have the following

Lemma 5. Under constraints 1°, if l//(X) the segment [0,1] is Holder
continuous with the exponent (0 < g <1), then for 0 < X <1 we have the
following inversion formulas:
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0, as s=0

!ASW(X%)M: _(%4-25}\/—711//(@, as s=1

where 7(x,7) = [P(XE, Ap(E)E, P(x,,2) i from (78)
0

The following theorem on inversion formula follows from lemmas 4 and 5.
Theorem 2. Under constraints 1° and 4° , if /(X) onthe segment [0,1]

is Holder continuous with the exponent (0 < q <1), thenfor 0 < X <1 we have

the following inversion formulas
0, as s=0

J‘/lsdﬂJ.G(X,faﬂ)‘/’(g)df: _(£+25j\/__11//(x) as s=1 (33)
L 0 2 , o

where G(X,&, A) is the Green function of irregular parametric problem (13)
(14).

Stage 4. The solution of the mixed problem.

Using theorem 1 for A € R5 according to the formula (28) from the

operation problem (10) (11) we have
T(xt ) = 5(x,z,—;eﬁztv(t) +jz( f (0)+al(t,,1)),¢2(t,z)j+

+ }G(x,g,z)[e—ﬂztu(g,t) - (&) - ﬁ(g,t,/z)]dg, xe[0]], 0<t<T.
0

Thus, we established the following

Theorem 3. Let constraints 1°, 2° and 4° be fulfilled. Then , if irregular
mixed problem (5)-(7) has a classic solution, then:

-it is unique,

-this solution is represented by analytic formula

L {i f (0)e**5(x, 4,1,0)+
=11 4

t t
+ 5(X, ﬂ%jef g, (2)d7, lj.eﬂ“z g, (z)d rj -
0 0

u(x,t) =

—ﬂeﬂztfe(x,g,z)f(g)dg-
0
—A}G(x,g,z)dgjef“-%(g,f)dz}d/l 0<x<1 t>0. (34)
0 0
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Remark 6. From derivation of formula (34) it follows that under
constraints 1°, 2°and 4° if the function U(X,t) defined by formula (34) is not
the solution of problem (5)-(7), then this problem has no classic solution.

Remark 7. The positivity of the number &(0 > 0) admits usto get
the inequality

2 _ 2
e*f|<C e A2 for el o<t<T, (35)

where 0 < w =SN 26 .
Inequality (35) admits to take for t >0 the operation of differentiation
with respect to t and with respect to x under the integral sign with respectto L.

Imposing definite restrictions on the function F(X,t),@,(t),@,(t), f(X) (see

[4] it is easy to see that the function U(X,t) determined by the formula (35) in fact

is the classic solution of irregular mixed problem (5)-(7).
Model problem 2.
To find the solution of the equation

ou o
—=—, Xx€(0,0),t>0 (36)
ot ox
under the boundary conditions
‘2‘: —p(), t>0 u(xb)|<Crexp(Mx), te[0T], as x—so  (37)
x=0
C; M are some constants, in the initial condition

u(x,0) =d(x), xe(0,,), (38)
where ¢(t)t>0,d(x), x>0 are some continuous

functions, and ®(x) < const for X € [0,0).

This model problem is among the problems considered by M.L. Rasulov
[10]. According to formula (3.5.11), p.152, [10] by Rasulov , the solution of the
problem (36)-(38) is

1 2%t e_/1>< ~ <
u(x,t):ﬂ—ﬂye {7¢(2)+E|:G(x,§,/1)cb(§)d§}dﬁ, (39)
where
1 - —Alx+ ~ Top
G(x,é,ﬂ»)zu[e Al _ gl ‘f‘l (p(/l):.([e (bt (40)

Now, using the finite integral transformation method stated in model problem 1,
for solving the problem (36)-(38) we get the following expressions
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—-ax t )
u(xt) = %J__l { 26 {2—2 ! e g(r)dr +%e‘“ + ! G(x, cf,/i)d)((f)dg}d 2, (41)
where G is from (40).
Thus, the solution of problem (36)-(38) is represented by different formulas
(39) and (41). Comparing (39) and (41) we see that the second summand in braces
(41), (39) do not exist, further in (39) in the first summand the integral

t 0
Je"z’go(r)dr is replaced by J-e”lz’(o(z')dr. This replacement, in our opinion, is
0 0

not successful.
In the problem (36)-(38) we assume

p(t)=0, d(x)=1. (42)
Then from (39) we have
t 2 x/(2+t) \g 43)
Ut = gexp( &%)de,
and from (41) we get
u(x,t)=1 (44)

On the other hand, by theorem 12, p 152 [10], the solution of the problem (36)-(38),
(42) is unique, on the other hand, for the solution U(X,t) of problem (36)-(38),
(42) M.L. Rasulov obtains the expression (43), though in fact the classic solution of
the problem (36)-(38), (42) is U(X,t) =1 from (44).

1.Statement of the problem
Find then classic solution of the equation

au—Z(x,aju—f(x,t)zv(x), 0<x<1 O0<t<T, (45)
ot OX

o) o° d
Z(x,éxj = a(x)erb(x)&Jrc(x),

satisfying the integro-differential "boundary" conditions

1 1 . . . .
V(DD =3 3 llDIDI u(xt)/ o + A DIDI U, 1)/ i+

n=0 j=0
l . .
+ [ (D! Dx”u(x,t)dX} —p(t), O0<t<T, i=12 (46)
0

the initial condition
u(x,t)\t:0 = f,(x), 0<x<1, (47)
and the finite condition
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u(x,t)f_; = f(x), 0<x<1 (48)

where U =U(X,t) is the sought-for continuous classic solution; V(X) is the

sought-for continuous control, a(X),b(X),c(X), f (X, 1), 7% (X), ¢, (t), f;(X)

, are known functions ; T(T >0), &), B are known numbers.
1° Let equations (45) be parabolic in 1.G. Petrovsky sense, i.e. let
Rea(x)>d,, Xxe[0,1], where d,(d, > 0) is some number.

2°. Let a(x) € C™*([0,1]), b(x) e C™™([0,1]), c(x) eC™([0.1]) .
3. Let ) eCY([01]).i=12; j=0L5n=01.

In conditions 2°and 3°, M(M >0), q(q>0), are some integers (see

remark 2.2).
49, et

f () € C'([01]), ¢ (1) € C([0,T1), (i =1.2), T (x,t) € C([0A]x[0,T]).
From constraint 1° it follows that

—%+45§arga(x)sg—45,XG[O,l], (49)
where 5(0 <5< ”j is some positive number.
8

Definition 1.1. It is said that the function U = U(X,t) is a classic solution
of problem (45) -(48) if
8, : the function U(X,t) is continuous for 0< x<1,0<t<T.

a,: the function U(X,t) for 0<x<1,0<t<T has a continuous
derivative of the form
au(x,t) du(xt) .
x oot
as: the functionU (X, 1) for 0<x<1,0<t<T has continuous derivatives

of the form du(xt) -

ot
a,: if ocl%) # 0, then (%fa):t)ec([o’a]x(o’T)) wherea(0<a<1) Iis

some number;

it S %0, then % e (-] (0,T))
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. : 2
if o %0, then ‘3;((;0 e C([0,a]x (0,T)), 6“(1‘(’0 e C([0,a]x[0,T))
if 5} # 0, then

d%u(x,t)

ou(x,t) i
o © C([L- e 1]%(0,T)), — € C([1-a1]x[0,T)),

if 5 (X) is not identically equal to zero,then

ou(x,t)
—c C([04]x(0,T)),

if ) (X) is not identically equal to zero, then azgx(;t,t) cC([04]x(0.T)),

ou(x,t) ,
T € C([O,l] X [O,T)),

ds : the function U (X, t) satisfies equalities (45)-(48) in the ordinary sense.

2.Parametric problem.

For solving problem (45)-(48) as first we solve the following parametric
problem

[Z[x,;xj—ij:y/(x), x e (0,1), (50)

vi(f,;(jyzyi, i=12, (51)

where y(x) € C([0,1]), 7; are some numbers, A -is a complex parameter.
Here and is the sequel, unless otherwise stipulated, we assume

eR, E{A:|/1|z R, |arg/1|§%+5},

where ¢ is from (49), R is a rather large positive number.
Denote by, (X), (i=21,2) the roots of the characteristical equation
[1, 9,10,11], covresponding to (50), i.e. let

—0,(x) = 0,(x) = —\a(x)\% exp(—ﬁargg(”j.

According to [1,9,10,11], [4], under constraints 2° and a(X) # 0,
X €[0,1] there exist the functions

0 (x) e C2([01]), s=0,m, g;,(x)=0, xe[0],
that for the functions
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yim(x’i)EeXp(iJ{‘gi(f)dfj[ .o(X)+ i (X) +.o = glm(x)}
0
it holds
(Z( EXJ iny'm(X 4= eXp[ife(f)deE'm(x), xe[01],i=12

A(A # Q) is any (complex) number, C([0,1]) > E;,, (X) is some function.

In [4] in domain Ry the fundamental solution P (X, &, 4) of equation (50)
is constructed in the form

P(X, f,ﬂ,) = I:>0 (X, é:! ﬂ') + j. PO (X! U,/l)h(ﬂv g! ﬂ)dﬂl (52)
0

(h(x, &, A) -is a sought -for kernel), where

and using fundamental solution, under constraints 1° and 2° in [4] it is proved that a
homogeneous equation corresponding to (50) has the system of fundamental
particular solutions Y; (X, A), (i=1,2) that together with first order derivatives
are represented by the asymptotic formulas

d® d®
xS yl(xi /1) = d_s Yim (X’ /1) + Efr?]) (X, ﬂ)’

Y, (X, A) = exp( zj 0. (f)dé‘} —Vom (X, A) + ES)(X,4),s=01; (53)

d®
d S

where Ei(rﬁ)(x, ) are some continuous functions with respect to X € [0,1] and

analytic with respectto A € R- and the foIIowing estimations hold:

‘E(s) (x, /1)‘ exp(—a\i\x)

ES) (%, 2)| < ——exp(—el2|(1—x)), [y1(x, 1) < Cexp(~e|i[x),

|y, (X, 2)| < C exp(—¢ 41— x)). (54)
Here and in the sequel, by C and & we denote different positive numbers
(concrese values of which are not important) independent of X € [0,1] and A € R(5

Remark 2.1. In the classic papers [9, 10,11], the methods used by them compelled
them to know asymptotics of the system of fundamental particular solutions of a
homogeneous equation with respect toA along the direction of A - plane and
because of that, on the roots of characteristical equation they imposed the constraints:
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(A): the arguments &;(X) and arguments of their differences &, (X)

—0;(X) are independent of X .

For equation (50) constraints (A) reduce to the assumption

B): a(x) =aP(X), where P(x) > 0, & — const for x €[0,1].

Unlike classic papers [9, 11], in the present paper (and in [4]) constraints (A)
are not imposed on the roots of the characteristical equation and therefore fulfilment
of constraint (B) is not supposed.

Expanding the determinant (determinator of the Green function)
we have

A(2) =Q(4) + E(4), (55)
where

1
QU = e+l + .t g E-0f ks ) 0

K (K > 0)is some integer.
Note that the number K contained in (56), may be taken rather large (i.e. for
A(i) one can obtain sufficiently exact asymptotic representations) if the numbers

m (from 2%, and ¢ ( from 3°) are rather large.
Definition 2.1. It is said that boundary conditions (46)(or (51)) well-defined

right if at least one the numbers ag, 0 ,..., 05_k , ( from (56)) is non-zero.

If boundary conditions of the spectral problem are regular in Brikhoff -
Tamarkin - Naimark - Rasulov’s sense, then they are well-defined in the sense of our
definition. But the inverse statement is not true.

Show this on the following examples

y"_lzy = W(X)v Xe (011)1 (57)

y(0)-2y@) =0, y(0)+y'(0)+2y'(1)=0 (58)

If we take system of fundamental particular solutiouns of a homogeneous equation

corresponding to (57), in the form y, (X, 4) = exXp(—1X), Y, (X, 4) = exp(4x),

then the denomination of the Green functions of problem (57)-(58) will be
A1) =2e" —61-2e",

Hence it is seen that boundary conditions (58) for equation (57) are regular in the

sense of Brikhoff, Tamarkin, Naimak, Rasulov. It we take the system of fundamental
particular solutions of homogeneous equations corresponding to (57) in the form

(53),i.e., y1(x, ) =exp(=4X), Y, (x, 1) = exp(-A(1 - X)),
then the denominator of the Green function of problem (57)-(58) will be (55) ( the
Green function itself of the parametric problem is independent on the choice of the

system of fundamental particular solutions), where Q(A) =2, E(1)=-64e"" —
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2%t = O(lsj A € Ry (S is any natural number)that indicates well-poseduess
A

of boundary conditions (58) in the sense of definition 2.1.
Let condition (51) contain only the integrals, i.e. for example, let

Vi(y) z}Ki(x)y(x,z)dxwi, i=12, (59)
0

5°. Let K; (x) € C'([01]) & = K, (0)K, (1) - K, (1)K, (0) # 0.
Then we have

1 _a0dx = LK (0)— Lotk
Vi(y1)=£Ki(X)exp( iX)dX—lKi(O) e Ki@+
1% . 1 1),
o g K; (x)exp(=Ax)dx = K;(0) + o[?j,
1 e e m-tek 0y
Vi(y2)=£Ki(X)eXp( A1 X))dX—;tKi(l) 7° Ki(0)

1t . 1 1)
- z£ K; (x) exp(—A(L— x))dx =5 K @+ O(fj

therefore from (56) we have

1
-2 E(1)=0| = |
o=, E0)=0 %)

Consequently under constraints 5° , for parametric problem (57),(59) "boundary
conditions” (59) are defined by our definition.
6°. Let boundary conditions (46) (and (51)) be well defined.

Further, let among the non-zero numbers o, as,..., Xg_ (from (56)),

with the greatest index there exist ag_y, -
Remark 2.3. It is approriate to take in condition 2°the number m and in
condition 3° the number q so least at which forQ(A) (from (56)) it holds

1
Q)= PR g\ - (60)
Using (60), for rather large R, from (55) we have

1 1 (61)
A > —
‘ (2«)‘ > 2 ‘aG_M ‘ ‘A{‘M_G

Inequality (61) shows that A(/I) #0forde Ré. Therefore, according to
[1,9,10, 11] and [4], it is hold following
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Lemma 2.1. Let constraints 1°,2° and 6° be fulfilled. Then, for 4 € R;
and w(X) € C([0,1]) parametric problem (50), (51):

i) has a unique solution Y (X, 4),,

ii) this solution is an analytic function with respectto 4 € R,

iii) the solution Y(X, A), is represented by the formula

y(X,2) = [G(X,& Dy (E)AE + (X, 4, 71,75), (62)

Using (54) and (61) we get the estimations
G, (x, & 4)| < C|4|" [exp(—&|A|x) + exp(~&|2|L- x))],

5064, 71,72) < CIA|" (| + 2| Texp(—&]4x) +
+exp(—¢|A|L-x))]. x,£ €[01], 1eR; (63)
where N is some (integer) number, C is a constant, independent of X, & €[0,1]

AeRy andyy,7,.

In [4] the following theorem on inversion formula was proved by the
fundamental solution P(X, &, A) from (52).

Theorem 2.1. Let constraints 1° and 2° be fulfilled. Then for any
absolutely continuous functions l//(X) on [0,1] it holds the following inversion
formula

e [ 2% Pk £, A (0dE =
(25+§jx/——1 Lo

where L is an infinite smooth line in R, whose rather distant part coincides with

w(x), forS=10<x<1  (64)
0, forS=0,-1-2,...,

continuation of the raysarg 4 = i(ﬂ + 5) moreover in (64) the integral along the
4

lines L is understood in the seuse of prinspal value.

Taking into account estimations (63), by the method stated in [4], we easily
prove the following

Theorem 2.2. Let constraints 1°,2°, 3°and 6° be fulfilled. Then for any

functions ¥ (X) € C([0,1]) and arbitrary numbers y, and 7, it holds the
following invertion formula

'[isdﬂ‘l[Gl(x,f,/l)y/(g)dgzo, 0<x<1 (65)
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[4°6(x A 71,7,)dA=0, 0<x<1 (66)
L
where S -is any integer, L -is from theorem 2.1.
From Theorems 2.1 and 2.2 we obtain the following
Theorem 2.3.Let constraints 1°,2° 3%nd 6°be fulfilled. Then for any

absolutely continuous functions l//(X) on [0,1]it holds the following inversion
formula:

w(x), forS=10<x<1 (67)
0, forS=0,-1-2,..,

o[22 G(X.e‘.ﬂ)u/(é‘)d§={

[25+%)«/——1L 0

where L is from theorem 2.1.
In [4] the following theorem on inversion formula is proved.
Theorem 2.4. If the function ¢(t) is continuous for t > 0, then it holds

the following inversion formula

L [2d,t2)d2 = (1), (t>0), (68)

[25—ZJJ——1L

t
L is from theorem 2.1, é(t,A) EJ'exp(/lz (t_r))(p(f)df.
0

3.Solution of the mixed problem.

Let the sought-for continuous control V(X) be a priori known and problem
(45)-(47) have the classic solution U= U(X,t). Applying to (45)-(47) the finite
integral transformation [4] , we get

Theorem 3.1. Let constraints 1°,2°, 3%,4° and 6°be fulfilled. Then, if

problem (45)-(47) has a unique solution, this is a unique solution and is
represented by formula

u(x,t) = %\/__l{{%(l—exp(ﬁ))IG(x,m)v(g)dg +ZF(x,t,Z)}dl,
0<x<l1l O0O<t<T. (69)

1 ~
F (Xt 2) = 00X Ag (6. A)wao (6. 2)) — [ G(x, €, Aexp(28) £,(8) + T (&t ) e
0

Substituting (69) in finite condition (48) for determining the unknown
control we get Fredholm’s second order integral equation (0 < x <1)

£,(x) = %\/__1{{%(1— exp(ﬂzT)).:fG(x,f,A)v(gf)dg + ,1F(x,T,/1)}d/1, (70)

Because of restriction on the paper’s volume, we don’t give investigation of
the solution of equation (70).
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Solving equation (70), we find the unknown control and according to (67)
we have

.[ %dﬂjG(x’fﬁ)V(f)df:O, 0<x<1. (71)

Taking into account (71) in (69), we get (0 < x <1, O0<t<T)

u(x,t) = J_ j {——exp(ﬂ,zt) j G(X, & AV(E)DE + AF (X, t, ﬂ)}dﬂ (72)

Improsing restraints on rather smooth ness of the functions contained in 3°
and 4° and using the inequality

|exp(/12t)| <C exp(—|/1|2tsin 25), lel. (73)

by the method stated in [4], it is easily shown that the function U(X, t), , determined
by formula (73), is the solution of problem (45)-(48).
Remark 3.2. In (72) when substituting Z = /12 the obtained image of the

L line from the Laplace straight line and advantage of the differs L from the
Laplace straight line is that according to inequality (73), in (72) the integrand factor

(lz'[) fort>0, 1eL, W — %0, decreases exponent tially, and this allows
easily to justify convergence of the integral in unbounded lines L.

4. Model problem.
Problem statement. Find the solution of the equation

ou_ 2o +v(x), xe(01),0<t<T, (74)

a x
with the unknown control V(X) , satisfying the boundary conditions
=0 0<t<T, (75)
initial condition
u(x,t)|_, = fi(x) 0<x<1, (76)
and finite condition
u(xt)_, = f,(x) 0<x<L. (77)
Let Co([0)={p(x): p(x) eC'([01), o (0) = ™ () =, for

-1},
All constraints of theorem 3.1 are fulfilled for problem (74) - (77) , and according
to formula (69), we have

Theorem 4.1. Let f,(x) e CZ([04]), f,(x)e Cq([0,1]). Then mixed

problem(74)-(77) with a control has a unique classical solution and this solution
is represented by formula
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o0 1 o
U(xt) = 23 exp(—k2z2)sinka| £,(£)sinkrdé +23 —
k=1 0 kK

x (1—exp(—k 2z %)) sin k;zx}v(g)sin kzddé, 0<x<l, 0<t<T. (78)
0
1 . k27'L'2
knédé =
_([v(cf)sm mede 1—exp(—k27r2T)><

1 1
X { [ £,(&)sin kxzdé —exp(=k*z"T)| f,(&)sin knfdf}. (79)
0 0

© 1
v(x) = 23" sinkax | v(¢)sin krdé. (80)
k=1 0

where the sought-for control V(X) is found by formula (80), its Fourier

coefficients [3] by formula (79).

The finite integral transformation method used here was suggested by us in

[4] and was successfuley used in [5-8] and in others.
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IIpuMeHeHHe MeTOJAa KOHEYHOT0 HHTErPAJIHLHOTO
Npoeo0pa3oBaHMs K PeIIeHNI0 CMEeIIaHHbIX 321249 I
napadoJnyeckux ypaBHeHHii ¢ ynpaBjieHreM

J.A.I'acbiMOB
gasymov-elmagha@rambler.ru

PE3IOME

OnHUM U3 METOJIOB PEILEHUsI CMELIAHHBIX 3aJay SIBJISIETCS KIACCUYECKHUI METO
pasnenenus nepeMeHHbIX (Metoa Dypne). Korna rpaHnyHbIX yCIOBUS CMELIaHHOW 3a/1auu
HEPETYJbIPHBI, TO BOOOIIEC TOBOPS, 3TOT METOJ HEMpPHMEHUMBI. B HacTosiel padote
MPUMEHSIETCS METOJ] KOHEYHOTO MHTEIPAILHOTO NMPEOOPA30BAHUS K PEIICHUIO CMEIaHHBIX
3ama4 111 1apaboIMYeCKUX YPaBHCHHUN C YIPABICHUEM U C HEPETYIbIPHBIMUA TPAHHIHBIMHU
ycinoBusMU. [lonydeHO aHamUTHUECKOE TMPEACTABICHUE PEIIeHUs paccMaTpuBaeMoi
CMEIIaHHOM 3aJa4H.

KiroueBble ca0Ba: KIaCCHUECKOE pEIICHHE, METON KOHEYHOT'O HETerpabHOTO
npeoOpa3oBaHus, ypaBHEHHS C YIPABICHUEM, HEPETYIbIPHOE TPAHUIHOE YCIIOBHE
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